KEY COMPETENCE
high reliability energy
The core of our competence center is the challenge of transport electrification, and, more generally speaking, the increase in energy density and electronic functions miniaturization (be them digital or power). This results in the massive insertion of commercially off-the-shelf components (COTS) and the underlying technologies into the supply chain of high-end applications such as automotive, aeronautic, and space alike.
Owing to the prowess of consumer electronics, these technologies are introduced in demanding markets such as defense and aerospace. The main challenge hindering their deployment in these severe environment operations is to assess their reliability (qualification, failure rate, and service lifetime), or more properly speaking their “dependability”*. Through our research, we aim to lay down innovative resources (tools and methodologies) and dedicated expertise (experimental and numerical means) to meet the challenges of this changing paradigm.
*Avizienis, J.-C. Laprie, Brian Randell, and C. Landwehr, "Basic Concepts and Taxonomy of Dependable and Secure Computing," IEEE Transactions on Dependable and Secure Computing, vol. 1, pp. 11-33, 2004
Objectives
The core of our activities is represented by the fundamental knowledge and understanding of the underlying Physics of Failure (PoF) or/and the Physics of Fault. This knowledge is used to tackle critical technical and scientific locks such as “appropriate” testing and characterization expertise (how-to-test) which, in turn, are essential to assess robust and margin-aware design rules (how-to-design). Through this approach, support for obsolescence management, virtual prototyping and qualification, and certification activities can be envisioned for COTS components based on emerging technologies which are characterized by increasingly higher complexity, and shorter development and lifecycle.
COTS components based on emerging technologies can be dedicated to different functions: electrical power (non-propulsive and propulsive), digital (calculation and memory), analog (radio communications and radar detection) and optics (communications and detection), storage and energy sources (batteries, fuel cells, and supercapacitors).
Our approach is essentially based on the analysis, understanding, and modeling of failure/fault mechanisms induced by the combination of usage driving conditions (stimulus) and working environmental parameters, which may be extreme and include electromagnetic compatibility (EMC), and natural radiation immunity.
R&T fields
** Guide for the selection of Deep Sub-Micron (DSM) for aeronautic equipment - Semiconductors lifetime” - Réf : GIFAS/2015/5022 - Décembre 2015
*** ISO: International Organization for Standardization | CISPR25 : International Special Committee on Radio Interference | DO160 : International Technology Roadmap for Semiconductors
Our offer
Expertise (state-of-the-art, technical syntheses, databases, and focused/advanced know-how)
Cost-effective methodologies
Guidelines, strategic view, best practices
Innovative/unique/specific/differentiating technological platforms (customized and trade tailored)
Contributions to TRL (technological maturity)
Exploitation and dissemination: patents, publications, press, conferences, white papers, training (seminars, dedicated days, tutorials, workshops, and summer schools)
ROAD MAP
2020 > 2025

If you are interested by our Center of Competence, you can freely download here 4 PDFs documents with additional information.
contact us
Contact our platform experts team
